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Abstract: There is a lot of valuable information in the trajectory data, but the sheer volume of 
data creates challenges for storing and analyzing data. Therefore, the simplification of the 
trajectory data is particularly important. The directional information of the trajectory 
contains a large amount of semantic information, and the trajectory contour can be well 
maintained based on the directional simplification. The algorithm in this paper, is based on 
the improvement of the classical direction-preserving simplification algorithm DPTS. The 
directed weighting graph is used to obtain the unique path according to the shortest path 
algorithm. The experimental evaluation shows that the average direction error is declined 
under the same compression ratio. 

1. Introduction 

The trajectory data is obtained by tracking and positioning the moving object. Nowadays, 
location-based service devices have been integrated into our lives, leading to the growing popularity 
of trajectory data [1]. Moreover, these trajectory data contain a large amount of information, which 
can be used for user behavior analysis [2], traffic analysis [3] [4], route recommendation [5] [6], 
social relationship analysis [7] [8] and so on.  

Typically, these positioning devices periodically collect the position of the moving object. When 
the sampling period is short, a large amount of data will be generated. Consider Beijing with 67,000 
taxis, suppose we collect trajectory data in every 2-3 seconds,   the size of the trajectories generated 
by these taxis for just a single day is as high as 60TB [9]. This will give us a huge challenge in data 
storage, transmission and   processing. In contrast, if the data sampling period is increased in order to 
reduce the amount of data, the loss of position information will result. In real life, if an object is 
running at a large speed, its position will vary greatly. For example, a taxi moving at 40 mph would 
have moved about 100 yards in 5s, whereas another taxi stuck at a traffic signal may not have moved 
at all[10]. Obviously, we need more frequent observations of the former than of the latter. Similarly, 
we need more observations to capture a taxi that makes a turn and fewer for one that continues 
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straight. Therefore, standard practice is to oversample initially, and then to simplify by eliminating 
observations that add little information. 

Therefore, compression of the trajectory data is particularly important. The trajectory compression 
algorithm can be divided into offline compression and online compression according to whether the 
known overall data is needed [11]. Offline compression is performed under the premise of giving 
complete data, and the compression ratio is better, but the trajectory performance is poor, which is 
suitable for the case where the compression performance is not high. Classical offline algorithms 
includes: DP algorithm [12], TD-TR algorithm [13], optimal algorithm [14] [15] [16], approximate 
optimal algorithm [17] [18], TS algorithm [19], ESTC -EDP algorithm [20] and so on. Online 
compression is a kind of timely compression, which can be compressed at any time, so its 
compression ratio will be reduced, but the compression performance is better, so it is used in the case 
of high compression performance. Classical online compression algorithms include: OPW-TR 
algorithm [13], construct security area algorithm [21], uniform sampling algorithm, SQUISH 
algorithm [22] [23], dead reckoning [24], DOTS algorithm [25] and so on. 

The above algorithms all perform trajectory compression based on the position information of the 
captured trajectory, and the compression algorithm based on the direction-preserving is rare. In a 
large number of cases, direction-preserving is especially important. When an object moves from 
position p to p', we defy the direction of this movement to be the angle of an anticlockwise rotation 
from the positive x-axis to a vector from p to p'. The directions of all movements captured in a 
trajectory is called the direction information, and is used heavily, both directly and indirectly, in a 
wide range of applications on trajectory data. Such as: map matching, clustering, direction-based 
query, contour discovery and so on. 

A typical direction-preserving trajectory simplification algorithm (DPTS) [10], by defined an 
angular threshold, constructs an undirected graph, and then through the breadth-first search BFS 
traversal, to obtain a shortest path, that is, as the final compressed trajectory. The algorithm ignores 
the path loss and the final compression trajectory may not be optimal. In this paper, the undirected 
graph is improved to a directed weighted graph, and the advantages of the proposed algorithm are 
shown by experimental comparison. 

2. Related definition 

Section Headings 
Definition 1 Trajectory: A track of length n is a collection of a series of time-ordered anchor 

points, T = {P1, P2, ...,Pn }. Each of the positioning points Pi in T is composed of a triplet <xi, yi , ti>, 
where xi, yi , represents the position coordinates of the moving object at time ti. 

Definition 1 Trajectory: A track of length n is a collection of a series of time-ordered anchor 
points, T = {P1, P2, ...,Pn }. Each of the positioning points Pi in T is composed of a triplet <xi, yi , ti>, 
where xi, yi , represents the position coordinates of the moving object at time ti.  

Definition 2 Trajectory compression: Given a trajectory T = {P1, P2, ...,Pn }, trajectory 
compression is to find a set of chronologically ordered sets of locating points T’ (a subset of T),  T ’ = 
{Pi1,Pi2,...,Pim} , where i1 <... <im, i1=1, im = n. 

Definition 3 Compression ratio: The compression ratio is given by the original trajectory T = {P1, 
P2, ...,Pn }, and the compressed trajectory T ’ = {Pi1,Pi2,...,Pim}. Compression ratio : 

CR = n/m , n ≥ m                                                                    (1) 

Definition 4 Direction-based Error Measurement Ed [10] . Given a segment pipi+1 in T , the 
direction of pipi+1, denoted by θ(pipi+1), is defined to be the angle of an anticlockwise rotation from 
the positive x-axis to a vector from pi to pi+1. Thus, each direction falls in [0, 2π). The angular 
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difference between two directions θ1 and θ2, denoted by △(θ1, θ2), is defined to be the minimum of 
the angle of the anticlockwise rotation from θ1 to θ2 and that from θ2 to θ1, i.e., 

△(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|}                                        (2) 

Note that the angular difference between any two directions falls in [0, π]. 
Let T ’ = {Pi1,Pi2,...,Pim} be a simplification of T The simplification error of T ′ under Ed, denoted 

by ϵ(T ′), is defined as follows. Given a segment pikpik+1 in T ′, the simplification error of pikpik+1, 
denoted by ϵ(pikpik+1), is defined to be the greatest angular difference between the direction of 
pskpsk+1 and the direction of a segment in T approximated by pskpsk+1. That is, 

ϵ (pikpik+1)=maxik≤h<ik + 1Δ(θ(pikpik+1), θ(phph + 1))                   (3) 

Then, the simplification error of T ′ under Ed is defined to be the greatest simplification error of a 
segment in T ′. That is, 

ϵ( T ' )=max1≤k<m ϵ(pikpik+1)                                               (4) 

In the following, when we write ϵ (pipj) (0 ≤ i < j ≤ n), we mean the simplification error of pipj 
when it is used to approximate the line segments between pi and pj in T . Let T be a trajectory and ϵ t 
be the error tolerance (ϵ t < π). Trajectory T ′ is said to be an ϵ t-simplification of T if T ′ is a 
simplification of T and ϵ (T ′) ≤ ϵ t.The DPTS problem is formalized as follows. 

Definition 5 spatial error: Given a trajectory T and its compressed representation T’, the spatial 
error of T’ with respect to a point Pi in T is define as the distance between Pi (xi, yi, ti) and its 
estimation P’i (x’i, y’i, ti).  If T’ contains Pi ,  then P’i = Pi. Otherwise, the closest point to Pi is defined 
as P’i which is along the line between predT’ (Pi) and succT’ (Pi), where predT’ (Pi) and succT’ (Pi) 
denote Pi’s closest predecessor and successor among the points in T’ [22].  

Definition 6 speed error: Given a trajectory T and its compressed representation T’, the speed 
error of T’ with respect to a point Pi(xi, yi, ti) in T is define as the absolute difference value between 
Speed (Pi) and AverageSpeed (PsPe), where Ps(xs, ys, ts) = predT’ (Pi+1) , Pe(xe, ye, te) = succT’ (Pi). 
Pi’s speed and average speed of segment PsPe are defined as follow 

   )()()( 11 iiiii tt/,PPDistancePSpeed −= ++ , Pi ≠ Pn                                                (5) 

   )()()( seeses tt/,PPDistancePPedAverageSpe −=                                                  (6) 

Definition 7 heading error: Given a trajectory T and its compressed representation T’, the 
heading error of T’ with respect to a point Pi in T is define as heading change between Heading (Pi) 
and Heading (PsPe), where Ps = predT’ (Pi+1) , Pe = succT’ (Pi). Pi’s heading, heading of segment 
PsPe and HeadingChange (h1,h2) are defined as follow 

                       1)( += iii PPPHeading  , Pi ≠ Pn                                                             (7) 

                   eses )( PPPPHeading =                                                                              (8) 
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3. Algorithm 

3.1 Empowerment Ideas 

The basic idea of the algorithm is consistent with the DPTS algorithm. It is  main change that 
replace the DPTS algorithm undirected graph with a directed weighted graph, so that traversing graph 
obtains the only shortest path.  

Have to be aware of, in order to ensure that the path with the smallest weight is also the least 
number of location points, there is no case where the shortest weight of the path is large or the 
maximum weight of the path is the smallest. The specific empowerment ideas are as follows: 

We define both edge weights and direction weights, which are represented by WE and WH 
respectively. For the edge weights, we set a fixed value,   WE=n*π, where n is the number of original 
location points. When setting WE ,  it is necessary to ensure that the shortest track path obtained is 
also the path with the fewest points after compression. There is no path with fewer points but greater 
weight. For the direction weights, set it to the sum of all angular changes compared to the threshold 
during the formation of this edge. For example, if there is an edge between P1 and P4 in the original 
trajectories, then WH=β(P1, P2)+β(P2, P3)+β(P3, P4), where β(P1, P2) represents Angle change 
between θ(P1, P2) and θ(P1, P4), β(P2, P3) represents Angle change between θ(P2, P3) and θ(P1, P4), 
β(P3, P4) represents Angle change between θ(P3, P4) and θ(P1, P4). 

Proof: If there is such a case, let the number of points be m after compression, then the total weight 
of these points is W total 1 = m * WE + WH total 1; assume that there are m-1 points but the weight is 
greater than W total 1, the weight of these points is: W total 2 = (m-1) * WE + WH total 2; Equation 
subtraction W total 1- W total 2 = WE + (WH total 1- WH total 2) < 0; if this assumption is true, when WE=n*π 
is defined, such a situation does not occur. Since all angle changes are within 180 degrees, when all 
the number of track points is multiplied by 180 degrees as the fixed edge weight, there is no case that 
W total 1-W total 2<0, which is contradictory to the assumption, and the assumption is not true.  

3.2 Algorithm Description 

The algorithm in this paper is mainly divided into the following three steps. 
In step 1, it constructs a graph based on the threshold ϵt, represented by Gϵt(V, E，W). For each 

position pi of T, where 1 ≤ i ≤ n, it creates a vertex of pi in v. For the position i <j of each pair (pi, pj), 
if ϵ(pipj) ≤ ϵt, it creates an edge (pi, pj) in E and assigns a specific weight to the edge. In step 2, it finds 
the shortest path from p1 to pn in Gϵt by the shortest path algorithm (ie.Dijkstra). In step 3, the 
solution resulting from the shortest path, this shortest path corresponds to the smallest track point in 
all locations in the T simplification. Therefore, if the shortest path is sorted ("ps1-ps2 -...- psm"), the 
result T' is returned as (ps1, ps2, ..., psm). 

Pseudo code description: 
Input:T={p1,p2,p3….pn}    // Original track 
      ϵt                   // Angle threshold 
Output:T’={pi1,p12,…pim} // Compressed track，pi1=p1,pim=pn,m<n; 
1)define G（E,V,W）       // Defining a directed weighting graph 
2)while true do 
3)   for each pi in T and for each pj in T where i<j do 
4)   define edgeWheight=n*π  // Defining edge rights 
5)   define directionWheight=0  // Define direction rights 
6)      if ϵ（pipk）≤ϵt and for each pk between pi and pj 
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7)      directionWheight= ∑ϵ（pipk）    i<k<=j // Directional right is the sum of all angle changes 
8)      W= directionWheight+ edgeWheight  // Calculate total weight 
9)get prenode[] on the basis of shortestPath algorithm// Get the array of precursor nodes 
10)return the trajectory correspoinding to the shortest path from prenode[] 
In the first step of the composition weighting process, the construction graph Gϵt will traverse and 

check all (pi, pj), where 1 < i < j < n, whether the threshold requirement ϵ(pipj) ≤ ϵt is satisfied, so the 
time complexity is O(n)*O(n2) = O(n3). The second step is to traverse the graph with the shortest path 
search, so the time complexity is O(n2). In the third step, the shortest path time complexity is O(n). 
Therefore, the time complexity of the algorithm in the DPTS algorithm is consistent. 

4. Conclusion 

In order to verify the performance of the algorithm, the proposed algorithm and DPTS algorithm 
are implemented in java language. And Geolife dataset [26, 27] was used for algorithms evaluating. 
This dataset can support transportation mode learning, 73 users have labeled their trajectories with 
transportation mode, such as driving, taking a bus, riding a bike and walking. In our evaluations, three 
labeled trajectories were used. Trajectory one is a multi-modal trajectory, it contains three 
transportation mode (walk, bus, train), 5911 positioning points, and a total duration of 3 hours 49 
minutes (from 2008-06-18,12:10:33 to 2008-06-18,15:59:59). Trajectory two is a bus track, it 
contains 2045 positioning points. Trajectory three is a taxi track in motorway, it contains 2167 
positioning points 

The algorithm in this paper is mainly based on the improvement of DPTS, so this evaluation is 
only for the direction preservation algorithm DPTS. Since the algorithm does not set the distance 
threshold, the error of the distance is too large. Various error metrics include average spatial error, 
average speed error and average heading error were used in our evaluation. Given a trajectory T = {P1, 
P2, P3, ..., Pn-1, Pn} and its compressed representation T’ = {Pi1, Pi2, Pi3, ... , Pim-1, Pim}, these error 
metrics are defined as follows:  

∑
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Figure 1 Comparison of average spatial errors under various trajectories 
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Figure 2 Comparison of average direction errors in each trajectory mode 
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Figure 3 Comparison of average speed errors in various trajectory modes 
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Figure 4 Comparison of compression ratios in various trajectory modes 

The above experimental results show that the evaluation error of the algorithm is compared with 
the DPTS algorithm, in which the red line represents the algorithm and the blue line represents the 
DPTS. The average distance error in Figure 1 is either fall or flat in each trajectory pattern. In Figure 
2, the average direction error is significantly reduced, and the advantages of the algorithm in this 
paper can be seen. The average speed error in Figure 3 is also basically a flat effect. Figure 4 shows 
that the compression ratios of the two algorithms are consistent with the theory, the algorithm does 
not change the compression ratio. 
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5. Conclusion 

In this paper, we consider that the classical direction preserving simplification algorithm DPTS 
has unit loss, and the obtained path is not optimal. Therefore, the DPTS algorithm is improved, the 
undirected graph is replaced to the directed graph, and the effective weight is given ,to ensure that the 
shortest path traversed by the shortest path algorithm is unique and let it be the compressed trajectory. 
It is known from the experimental evaluation that the algorithm reduces the directional error while 
maintaining the same compression ratio. However, the algorithm in this paper is insufficient, ignore 
the situation that the angle change between the track points is greater than the threshold, and the 
distance threshold is not considered, so the following will be studied. 
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